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SECTION Ip
INTRODUCTION

By the very nature of a numerical approach the computation

F of a flow field is restricted to a finite region, Figure 1. At

the outer boundary of this region one must impose conditions which

insure that a further continuation of the flow field has the
properties desired at infinity . In a steady flow this means that

the deviations from a parallel flow tend to zero as one goes to
infinity. In an oscillatory flow this criterion is not sufficient,
for it is satisfied by incoming as well as by outgoing waves. One
must express, somehow, that only outgoing waves are permissible.

The present discussions are carried out with a view toward

the computation of flow fields in the lower transonic region . The
flow in the far field does not show the difficulties which are

- • typical for the transonic regime; it can be treated by means of the
potential equation for unsteady flows linearized for the vicinity

of a parallel flow with the prescribed free stream Mach number .
In steady flow, one deals in essence, with ~e Laplace equation.

If oscillations with a fixed frequency are present, one ultimately

has to solve the Helmholtz equation.

The far field conditions for steady transonic flows have been

studied by Klunker (Ref. 1). The extension to oscillatory flows

is due to Traci, Albano, Farr and Cheng (Ref. 2). In one regard

these formulations have an unexpected form. The conditions at the

far boundary express a property of the far field . It should ,
therefore, be possible to formulate them in terms of quantities

pertaining to the far field , specifically in terms of the potential

and its normal derivative at its inner boundary. These quantities F

are, of course, identical with the potential and the normal
derivative at the outer boundary of the computed part of the flow

field . The formulations of Ref. 1 and Ref. 2 express the far

field conditions in terms of near field data. A formulation solely

in terms of far field data is indeed possible. it is not more

complicated than that of Ref. 1 and 2. We shall give a rather

thorough discussion of a number of different formulations including

that of Kiunker and Traci.
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A clear understanding of the far field conditions is particularly

important for oscillatory flows. In a steady flow the conditions 
-

•

at the far boundary have only a relatively small influence. They

can be taken into account by iteration. For this purpose the

procedures of Ref. 1 and 2 are well suited. Actually they have

been used only in this sense. If one has a flow with harmonic

oscillations, then the far field condition has a drastic effect
unless the frequency is very low. Take for instance the field around

a pulsating sphere in air at rest (Helmholtz equation). The solution

which admits only outgoing waves is quite different from the one

where, at a large radius, the amplitude of the oscillation is
required to be zero. For such flows, it is likely that one will
have convergence difficulties and under these circumstances
alternative formulations of the far field conditions may be useful.

The formulation of far field conditions obviously requires

that the oscillatory part of the solution in the far field can be

represented analytically . This is possible, only if the governing

equation is rather simple. The Helmholtz equation , for instance,
has simple fundamental solutions for the far field. The differential

equations for oscillations superimposed to a flow with a free

stream Mach number one and linearized for the vicinity of such a
flow are much more complicated and analytic solutions are not
available. Such problems are not included in the present analysis.

The primary goal of this report is the development of the
basic concepts. The work is, of course, done with a view toward
numerical implementation; however , it is still several steps

removed from an actual program. An example is given, but it is
overly simple. Its sole purpose is to illustrate the typical steps
which one has to carry out. But it also shows some specific

difficulties encountered in solving the Helmholtz equation . This is

desirable because the experience gained with the Laplace equation

is not always a safe intuitive guide.

Section II starts with the linearized equation for unsteady

f low, carries out transformations which bring the problem into the

• form of the Helntholtz equation and derives particular solutions

3
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which presumably represent outgoing (or incoming) waves. Section

III has a more theoretical nature. It shows that the particular

solutions derived in Section II are a superposition of outgoing

(or incoming) acoustical waves; that is, it shows that these

particular solutions have indeed the desired characters. Section

IV uses Green’s formula to discuss certain properties of the solutions
at the far boundary. The far field conditions are fully formulated

in Section V. This includes a discussion of the formulations of

Ref. 1 and 2. In Section VI the principal steps needed in an

application are discussed on the basis of an example. It is very
simple so that the steps which usually are carried out numerically

can be replaced by analytical formulae. In these examples, one
recognizes certain difficulties which may arise in practical work.

Sections VII and VIII contain a number of observations concerning

the practical side of the numerical work .

I
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SECTION II

Pt ’
BASIC EQUATIONS AND PARTICULAR SOLUTIONS

The linearized equation for unsteady compressible flow is

given by

çL~ (/ ~~I4~a~Yi ~
% ~~~ 4~~1/~

i-
)4~~ (ø~% ~~o (1)

i~, ~~~~, ~ is a system of Cartesian coordinates, t the time, ~ the
velocity potential , U the freestream velocity and ”a the velocity of

4 sound (constant because of the linearization) . We shall write

I 
M = U / a  (2 )

One sets

I: (3)

where v is a circular frequency, and 5c, ~~~~, ~ arise by the Prandtl
Glauert coordinate distortion

.Q
~~~~ f ~~i’/ -A ?f~f ,  1~~(,_ ,4O

hh/a
1 ( 4 )

This gives

-‘ 2 41 _
~

t ~‘ ~~~~ 
- - C (5 )

The hypothesis

~~~~~~~~~~~~~~~~~~ g~P~~J) (6 )

removes the term The coordinates ~c, ~~~~, ~ are made dimensionless

with some characteristic length L (either the chord or the half

chord of an airfoil).

x~~~/L ; y
~~~~~~~f/L ; ~~~i/I

Then one obtains the Helmholtz equation

o (7)

with
a.vL

(8)

- - - - • - - -. -
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Frequently, one introduces in such problems a reduced frequency
to be noted here by u I

-

one ha s /1
(9)

Let and ~~~
‘ be position vectors in the x , y ,  z system and let

_4 .4~ f

4 +A fundamental solution to be denoted by w( r , r ’) is obtained by the

41(7 ~
) /(r)

and one obtains

€v(~~ ~2 - ±! ~~~~/_~~~r)  ( 10)

or

4)f r  ~~?) - ~~~~~~~ (11)

The expressions 10 and 11 represent outgoing and incoming waves ,
respectively. At least they would represent outgoing and incoming
waves, if the Helmholtz equation had been obtained by making the
assumption

-

in the equation for acoustical waves

1* 
~
t I

~
) ,i ( ~O .. r.~ ~~o7~~ 7ff T~? Ttt

The author did not find this analogy completely convincing , but

we shall show in the next section that Eq. (10) can, indeed,
be interpreted as a superposition of outgoing acoustical waves.

For someone willing to accept this interpretation, there is no
— 

need for the discussion of the next section.

Next, we derive solutions corresponding to a family of
particular solutions which include the counterparts of Eqs. (10)

and (11) for the two dimensional case. We omit the z dependence

in Eq. (7) and introduce polar coordinates

6
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(12)

~~

• (In most cases, one chooses x ’ = y’ = 0.) One then obtains

~ 
r 5 ó~ 44~,9~~r 0 (13)

The hypothesis
3

~~) { c i~ri.(m t 9)  (14)

leads to

9~~~~ “~ ‘ ffo... ‘5~~~
”

~~~~~~~ “ ‘ ‘1ff~si ~‘ (15)

This is Bessel’s equation. One then obtains the solutions

1
d H ( i~r) ~~~.• r’ii ~~“ ( ~~~~~~~~~~~~~~ (16)

,4/ (
~
.&o.’ ) L . 6i (17)

and , in particular, for m = 0 -

•

(a)
• wfr r ’)  ~~~~~~~. ,y (18)

(19)

The expressions H behave asympototically as

(20)

~ 
~~~~/

I/) 
~~~~~~~ 

(21)

This suggests that the expressions 18 and 20 represent outgoing

and the expressions 19 and 21, incoming waves.

Eq. (15) shows that g is oscillatory for r > m/~i and
nonoscillatory for r < m/~i. (In the nonoscillatory region , g
is monotonic except for possibly one minimum of the absolute

7

__ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  



• ~~~~~~~~~~~~~~~~ ~— -~-.- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~— - ~~~~~-;~:~ r 
• 

• - 
- - 

________

value of g.) If the nonoscillatory region of the solution

resembles that of the Laplace equation, the region increases with

m and decreases with increasing u .

We derive the corresponding particular solutions also for

the three dimensional case. Usually one needs them only for r ’=O .

We introduce a system of spherical coordinates with radius r, i~

longitude , and 0 latitude and set ~ = sin 8 , where the z axis points

in the north direction ; that is, we introduce
• ~. a. a. L.r = .

~
(22)

çs.~ ~~~~~~~~~~
then one obtains

~~

. ,‘
~~~~~ ~~ 

~~~~~~~~~~~~~~ 
~~~~~ 

~‘ ~~~I(/~~!4J #%..f) 
~~~~~~~~~~ (23) -

•

The hypothesis

,~
( J., ~~~~) 

- 
~~~~

‘

~~~~

‘

(f )  ~~~~~ øt~)i~ I (24)

gives

~~ ~~~: ~~ £ ~~ ~ ~~~~~~~~~~~ ~~~~~~~~~ ~~ 
~~~~~~~

- 

~~~~~ 
) S~sv (2 5)

Next, an expression
•6~ ~~~~~~~ .,,~

is substituted into Eq. (25). Multiplying the result by

r2/(f(r)g(~ )) and introducing a separation constant A , one then
• obtains

LA) /4) —

,~ 7. ~~ 
~~~~~~~~

- -h’ 0 (27)

and

/ 
a~ *~

a_ 
~~~ic~ 

/ 
,
~ (~~ 

- (j .) - C 
(27’)

Eq. (27’) is the equation of associated Legendre functions

(spherical harmonics) usually denoted by ~~~~ Notice that

8 
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Eq. (27’) does not contain the frequency i .  The separation

constant is determined from Eq. (27’) by the requirement that

the function 4 finally obtained be regular at the poles ~ = ±1.

One obtains

A = n ( n + l )

(This explains the introduction of n anticipated in Eq. ~26).)

Moreover , one has

m < n

(see forinstance Reference 4, Chapter 11). Substitution of A into

Equation 27 gives

~~~~ o (28 )

This differential equation has a regular singular point with

exponential n and -(n+l) at r = 0 and an essential singularity at

infinity. The series development proceeds in powers of r2. The
function f(n) can be expresse d in terms of elementary transcen dental
functions . One sets for this purpose

ft..) . I• / (,.).- 
~ 

(29)

then one obtains

_ _  
- ~ s - -~/) °

Ir ~ 
— r

A power series hypothesis for f

(30 )

J leads to the recurrence relation

• 4
~.#, z~~~~”--~~

)

~
.4 (4,~(/ ) (l~~

_ , 4)  (31)

hence
4. ~~~.

1 ~~~~~~ /
= (~~44.) 

(,fr -I~).~ (2’vI.’ 4! (32 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - - ~~~~~~~~~~~~~ ~~~~~~~~~~~



- - ~~~~~~~ ‘~T’~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ • v v r ~ •

The coefficients are zero for k < 0, and for k > n for the factorials
of negative numbers are infinite. In other words, the function
f is a polynomial. A second solution would start with a 2n + 1.
It is then given by an infinite series. But a second solution

can be obtained in a different way (as we shall see).

For a steady flow (p = 0), fn(r) is given by ~~~~~ and rn.
In the far field only the negative powers play a role. In a steady

f low it is, therefore, possible to formulate far field conditions
(where r is large) in terms of a very limited number of such
particular solutions, usually only r~~ and r 2 (poles and dipoles).

The contributions of single poles vanish if one has closed bodies.

In oscillatory flows, all particular solutions decrease for large
r and r~~ , it may therefore be necessary to take a large number of
these particular solutions into account.

Eq. (28) shows that the solutions fn are nonoscillatory
2for (pr) < n(n+l).

-
• The differential equation for ?‘ (Eq. (28)) has real

coefficients. It is therefore satisfied separately by the real

and the imaginary parts of the expression Eq. (29).

If a0 = 1 is real , it then follows from Eq. (30) that a1
is imaginary. This means that the development of the imaginary
part of the expression (29) has as lowest power r~~ . However , the

exponents of the regular singular point r = 0 are —n-l and +n.

It follows that the lowest power in the development of the imaginary. +n .part is actually r . The expression (29) contains, accordingly,

the solution pertaining to the exponent +n as well as that to the

exponent —n-l.

For n = 0 one obtains the fundamental solution, Eq. (10).

Because of the presence of the exponential function in Eq. (29),

one will surmise that also these expressions are related to outgoing

waves. (Of course the real or imaginary parts by themselves are a

mixture of incoming and outgoing waves.)

10 
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Incoming waves are obtained by taking the conjugate complex
of the expression 29. Let us introduce the notation

(33)

~~~~~“~~ ‘~‘ 

~~~~~~fr) Cfr~~ ‘

(34)

“~~~~‘~~~~ = r:iv~ (’~
,,’/ (’r ’

where f is given by Eqs. (29), (30), and (31), and * denotes the
conjugate complex. Solutions with last subscript 2 represents
incoming waves. One notices that ~~m,n,i,1) is the conjugate
complex of •

(m~ n, i~ 2) There exist orthogonality relations

Gt~~ 4

There exist also formulae for the normalization constant, but they
are not needed here. Besides, one has orthogonality relations
between the trigonometric functions sin m~ or cos m*. Then, one
has for constant r

fOr (*~~)~~~~J ~
) 

~~~~~~~~~
where do is the surface element of the sphere. Notice that one
may have k1 = k2. The derivative of the function ~~~~~~~~~ with

• respect to r is the derivative with respect to the normal of this
surface, it will be denoted by dcJ /dn . Now consider

ff11’,~ 
“~ ~ 4) * 4~~”~%, %~

This expression obviously vanishes for (m1, n1, i1) ~ (m2, n2, i2).
• If these subscripts agree, and k1 and k2 are different, k1 = 1

• and k2 =2, say, then one obtains

• O”~ t’ I :~~~
j  ~~~ 

- ~~~~~~~~~~

where at is the spatial angle of the surface element. If k1 = k2 =
1, then one obtains

J/~ (~)f ”~
;_)] ,&~j m;~ ~~ ~~

~~~~~ 

___ 
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The expression in the bracket is the Wronskian of two linearly

dependent solutions of Eq. (28). Because of the factor 2/t of

the term df~~1’dr in this equation , the Wronskian is given by
const r 2. This shows that the integral is independent of r.
Thus, one has

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~

= 0 ~
If all superscripts are the same , then one obtains a constant
independent of r. So far this formula holds only for surfaces

r = const. In Section IV it will be extended to surfaces of

arbitrary shape. The formula can be used to decompose a given

function ~ into incoming and outgoing waves.

12
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SECTION III
INTERP RETATION OF THE SOLUTIONS DERIVED IN SECTION II

We start with the equation for the small acoustical

perturbations

4, + 4, + 4, — a 24, = 0 (36)
xx yy zz tt

Let r and r’ be vectors with components x, y, z and x’, y’, z’,
- • respectively, and let

r = Ir — r ’ I  (37)

Then , one has the well known particular solutions

• 4,(r, r’, t) = r
1(f(r—at)) (38)

where f is an arbitrary function. Taking for f a function which

has finite support (that is a function which differs from zero only

in a finite interval) one clearly obtains the picture of a wave
package which travels with the speed a in the direction of

increasing values of r. (The shape of this package changes because

of factor r~~.) The expression (38) can be interpreted as the field
caused by a source at the point r = r’, its strength is given by

the momentary mass flux through a small sphere around this point.

Assuming the density to be 1, one obtains the source strength at

time t

The total mass flow during a time interval from t1 to t2 is given

by

Choosing for f a delta function, one obtains the effect of a

momentary source at (at time t’)

-

or

13 
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The total mass flow of this source is given by

-+t / , / Y-4(t -eWt .R 
~~~~~
‘/

~~~~~
‘
~~~~i~~ - -

The potential for a wave caused by a momentary source of strength
1 at time t = t’ and at a point ~ = ~~‘ , is therefore given by

~ - ( *Zf’~~~~/ ( _~~(~
_
~’,1) (39)

A flow field which can be represented as a superposition of
4 such waves (with different times t’ and different centers r’) and

where r ’ is confined to a finite region, satisfies the condition
that at a sufficient distance it consists only of outgoing waves.
This is our basic definition. Now consider a superposition of such
waves whose strength is given by exp(ivt1). Then, with Eq. (39),

~~(~~~‘t) -
Let

~‘ 
r-2 .(~~-~~~ ) •~~~4 

.r- 4~.Q
’
~

The integrand is zero except for v = 0, because of the presence of
the delta function, that is for

= t - £
a

One thus obtains

f ,~~~~’t )  ~~~~~~~~‘~~~(‘~ ‘
~~~~~~~“) (40Y

This result can be obtained directly from Eq. (38).

• The equation for an unsteady flow linearized for the vicinity
of a parallel flow in the x direction with velocity U arises from
Eq-. (36), if one views the flow field from a coordinate
system traveling with velocity U in the negative x direction.
Setting

~~-~~tU~ ~~~i~) ~~~~•~~
•
~~~~~~) 

t x Z ~ (41)

one arrives at Eq. (1) .
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We now derive particular solutions of Eq. (1) by a
superposition of momentary sources of strength exp(ivt) moving
in the negative x direction with velocity U along a line y = y ’ =
const, z = z’ = const so that it arrives at the station ~ at time

• t’ = 0. The flow field so arising is viewed from a system of
coordinates which moves with the same speed in the negative x
direction so that the origin of the moving system of coordinates
arrives at the origin of the system of coordinates fixed in the
air at rest t time 0. In the moving system the source lies at
x = ~~~‘ at all times. Accordingly, we chose

_ g  ~~~~~ ~‘ 17 +

‘r j~X vT~~J’~~.a/
(42)

Let

~ . 

~~ 
_,71

)
L 
i (i -aV’= (f-~~~”1~~~~~~

’ (i- ~~~
Then one has

- / ,;‘~ ??,2 /41 - - ~ f/
/ 

(44)

Using Eq. ( 3 9 ) ,  one then obtains for the potential in a
moving system of coordinates

with
,;:~~ (i~.j~ a)
, — I
- t

,%) ~
‘•I ~~ /

We set

‘, ~~
-- ‘

~~~-ë) =/ ((j ~~~1_ ~~~( t_~~
h
1t#//

& _ a ~(t _t l
)  (46)

then• dv .  / : - ~‘.2- i ~t’t-t2JZ~c’a’/c”~ 
-

Hence t
~~~~~ 3~~t). - f’/2ft4v~ ’)/tT(~~ ’) 1r~?-t2ia~/ 671)IV
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The integrand is zero except for v = 0. Hence, from Eq. (46)

t e ’ /(~~~~ ‘--~)tJ~ (48)

Only the positive root appears because of the limits of the integral,
Eq. (45). For v = 0 one obtains from Eq. (46)

r=a(t — t’) t
One obtains for the term in the bracket of Eq. (47)

-

Using Eq. ( 4 8 ) ,  we f inally obtain

ço(~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fl ~~~~~~~
(’

~
/v

~
hr#

~,?zu
i(

~ ~~~~~~~~~ (,_M
~,4r~’?)/

This expression is singular at the point F = F’. It leads directly
to the particular solution , Eq. (10). This shows that this

particular solution represents the potential of an oscillating
source moving in air at rest. Thus, the fundamental solution,
Eq. ( 10) , represents a superposition of outgoing acoustical
waves.

The corresponding solutions, l~q. ( 18) ,  can be obtained by
the so called method of descent; that is , one considers a distribu-

• tion of sources of the form, Eq. (10), which is constant along a

line ~ = ~~~ ~ = y ’ of the three d imensional space. The potential

is then obta ined by an integration with respect to i’, the result
is independent of ~~. One obtains in this manner one of the integral
representations of the Hankel function .

Differentiating the three dimensional fundamental solution

Eq. (10) , with respect to either x ’ , y ’ or z ’ or equivalently
with respect to x, y, or z, n times one obtains expressions of the

form, Eq. (29), in which the functions f are polynomials of the
degree n. Such expressions satisfy the original Helmholtz

Eq. (7).
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Not all of these derivatives are independent because the

function to be differentiated satisfies the differential Eq. (7).
The process of differentiation is the limit cf a superposition

of expressions (10). Accordingly, these derivatives amount to a
superposition of outgoing acoustical waves.

If one carries out a fixed number of n1 of such differentiations,
then one obtains a finite number of linearly independent expressions
of the form

J~/’~ b,)/&)

where the function f(r) has the form

~~~r )=  ~~~~g’-~~i4r) I(~.) ~~~~~

in which the function P(r ) is a polynomial of degree n1.

These particular solutions can be represented by the ~m,n,i,k

defined in Eq. (33) . At inf in i ty  the solutions with exp( - ipr )
and exp(+ipr )  (see the definition of f in Eq .(39)  ) behave as
r~~ . Therefore , one must admit funct-ions 4,

m ,n,i,k with superscript
k = 2 as well as k = 1. Since at the origin one of these
derivatives has as lowest powers ~~~~~~~ one needs to admit
particular solutions 4, with m < n < n1. There are only a finite

-
• number of such solutions. Then one has the following situation.

Consider ~ and 0 as fixed. Along such a ray through the origin
the function 4, obtained by forming the ~1

th mixed derivative
has the form

The particular solutions (Eq . ( 3 3 ) .  used for the representation

of this function combine into an expression of the form

-‘(. -/ .w(~~

~~~ ‘? ix,~f~r)
. t r I  ~~

Equating these two expressions, one obtains
‘

!

°

fr)’-W
’--~~~~~~~’)- ~~~~ (e~h,’j 44r) .t ~~“

and hence
1(1 1 

- .1 — ‘~~~~/
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Now one has a polynomial in r on the left and a transcendental

• function of r on the right. This equation can be satisfied only

= 0. In other words, the representation of the derivatives
contains only functions 4, (m ,n ,i ,~~ in which the last subscript is
k = 1. Now it is a matter of counting the number of linearly
ind ependent derivatives and the number of functions ~~~~~~~~~~ in
order to demonstrate that the relations so constructed can be
inversed; in other words, that the functions 4,

(m,1~,1,1) can be
represented as a linear combination of derivatives of the

fundamental solution (Eq . (10)). Then it follows that the

expressions (Eq . ( 3 3 ) )  with last subscript 1 can be interpreted
as a superposition of outgoing acoustic waves.

Specific formula are not needed in the present context.
They are derived in the appendix .

I
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Now one has a polynomial in r on the left and a transcendental
£4

function of r on the right. This equation can be satisfied only

if P~ 3~ = 0. In other words, the representation of the derivatives
contains only functions 4, 

m,n,i, in which the last subscript is

k = 1. Now it is a matter of counting the number of linearly
independent derivatives and the number of functions 4, (m ,n , i ,~~ in
order to demonstrate that the relations so constructed can be
inversed ; in other words , that the functions ~~~~~~~~~~~ can be
represented as a linear combination of derivatives of the

fundamental solution (Eq . ( 1 0 ) ) .  Then it follows that the
expressions (Eq . ( 3 3 ) )  with last subscript 1 can be interpreted
as a superposition of outgoing acoustic waves.

Specific formula are not needed in the present context.
They are derived in the appendix.
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SECTION IV
GREEN’S THEOREM

So far we have derived a system of particular solutions of
the Helmholtz equation including a fundamental solution and we have
shown ~~at they can be interpreted as a superposition of outgoing
acoust ~al waves. These particular solutions satisfy the tar field
con: it •ons. Flow fields which can be represented as a superposition
of such expressions will also satisfy the far field conditions.
This statement can be regarded as a characterization of such flow
fields. In a further development, we bring this criterion into
a form which is more practical. This is done by means of Green’s
formula.

Let

L (~~~) ~~~

and let 4, and c~ satisfy

Zi
’

~~~~ 
- h,’~~)~~ o (50)

(51)

where h(~) is considered as known. Let R be some region in the
• x,y,z space and ~R its boundary. Within this region Eqs. (50)

and (51) are satisfied everywhere. Then one has, because of
• Eq. (51)

/// fL (~t92) - 4(~’)/w(~~ ~/~“ ~

where dv ’ is the volume element in the three dimensional space
of the variable x ’,y ’,z’. Denote by 

~~~
, and w ,  the derivative

in the direction of the outer normal in the x ’, y’, z’ space.
Then one has the familiar formula

/ f fw(~~’~~, f~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ u(i~’~Iv’ -

Taking for w (~ ’) the expression w (~ ,~~’) given in Eq. (10)
surrounding the singular point ~ = ~~‘ by a small sphere in the

~~‘ space, one obtains in a familiar manner

• 19
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~~~(7) 1- ~~~~~~~~~ ~ // , ( ) ~ 
(
~~,
(;

~ ~~~ir~) JIe’ ,~~~~Ø’4,
’

~
’

~~~4~(q ~2Iv ’ (52)

For our application, one considers a region bounded by the two

surfaces ~R1 and 3R2. The normal derivatives always refers to the
outer normal of the region R. One is not justified to disregard
the contribution of the surface aR~ even if it should move to
infinity, for the expressions ~

, and w do not die out sufficiently
fast. The limiting process is justified for the steady case

= 0). Eq. (52) is an identity. It holds only if the
+ 9.

values of 
~~~~~ 

(r’) and 4,(r’) are taken from a function 4, which
satisfies Eq. (50). For a further discussion , consider an

expression

~~ 
//f - 

t~~’~~ ~~~~~~~~~~ 
(“ 2 ~‘ 

4? (P ~~i ,~ (~) J/ o’ 
~~ 
ff1) (,?j e~’~~ ~~
4

The function w ( r ,r ’)  satisfies

I

where the subscript r under L indicates that the operation L is
to be carried out with respect to the variable ~~, while ~~‘ is a
fixed parameter. Because of the normalization of w ( r ,r ’) ,  one
then finds from the last formula that

I 
(~i~i) 17 (‘~ ( 54 )

everywhere inside and R and

0 (55)

outside the region . For small r = — 
~~~~

‘ I  the function w ( r ,r ’)
behaves as —4ir/r; that is, exactly as the fundamental solution
of the Laplace equation. The surface integrals, therefore
represent a layer of poles and dipoles with densities given
respectively by f1(r ’) and f2(r’). A layer of poles generates a

function 4, which is continuous everywhere and for which the normal
derivative has a j ump given by the density of the poles , here by f1.
A layer of dipoles oriented in the direction of the normal gives

20
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V a function 4, for which the normal derivative is continuous everywhere
and for which the jump of the potential is the negative of the

dipole density (-f2). This is an interpretation of Eq. (53).

If f1 happens to be equal to the values of 4,~ 
pertaining to an

actual solution and -f2 happens to be the value of 4,, then the
potential outside of R is identically equal to zero and one recovers

• inside the function 4, (~~).

Let ~R be the contour of a body. An expression

5 )  f / f -  ~ t”~ 
;~~~
1ç 
f 

~~
, 
()

~ r~) %(7~J lo’ f /f  4(f’) ,‘
~~~ ~~~ 

Q’v ’

satisfies

L (’çul- ‘~
(

~
‘)

and the far field condition for 4,, for it is a linear combination
of functions which satisfy thiscondition . If f2(r’) and f1(r’)
happen to be identical with 4, and its normal derivative at 3R,

then the above formula gives a representation for 4, in the field .
(Usually 4,

~ 
is prescribed and 4, is unknown.) Notice that in this

derivation, we have used results of potential theory rather than
Green’s formula. A comparison with Eq. (52) shows that the

integral over the outer boundary does not appear. How this comes

about is seen by the following argument .

Let h ( r ’)  = 0 .  The-n one has

• II ~‘- 1’ (~~
‘) 4’(’ 2 ~

‘ 
~~~~~~~~~~ 

(~~~~(7~~]dO
’ ,4~~~~~~ C 

~~//‘~)4i(’I~) ~‘/~‘i~ w,,’i/do’

• This shows that the integral

f / [ -~, (7~~~1 w(,’~~,’ ~~(7?)t, (r~Jdo’
remains unchanged if one carries out a continuous deformation of
the surface ~R through a region in which

L (ço) = 0 ~nd L (cu )  a

Notice that 4, or w need not satisfy special far field conditions.

Such a deformation can, for instance, be carried out for the
spherical surface over which the integration in Eq. (34) is carried

out. We apply this result to two functions w (r,r’) and w(r” ,r’)

L 21 
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where the singular points r ’ = r and r ’ = r” lie inside of the
contour 9R

EIi

SR

Figure 2. Surface 3R in the r ’ - space.

The surface 3R can be contracted into two small spheres around the
singular points ~~‘ = and ~~~

‘ 
~~~
“ , and then the integrals can be

evaluated . One finds that the contributions of the two spheres
cancel each other. Thus,

- —ø~ .., ..p, - +1
J f f w t’r~ r)  ,, 

(re, r )  - v-j  wfr 1 ~1J~’°” 0 (56)

A function 4 , ( r )  that satisfies the far field condition can be
represented as

-, -•1
p4( r) ~Z~4A.~(r~~)

This function evaluated at r = r’ gives

Thus, one finds that

• // f~~~~f,? r~) j é , t’r2 - r)~’(r~’)JdD ’ - o (
~~

)

This explains why the integral over the outer contour is not present

in Eq. ( 5 2 ) ,  if the far field conditions are satisfied . It is ,
of course , assumed that h (r ’)  = 0 outside of the outer contour ,
for Eq. (57)  does not hold if one of the singular points
r ’ = r or r ’ = r ” lies outside of the surface of integration.

The relation (Eq. ( 5 7 ) )  constitutes a far field criterion.
It must be satisfied for every choice of r (although one will then
obtain redundant conditions). It therefore holds also for derivatives
of this equation with respect to r, that is, if the function w (r,r’)
is replaced by its derivatives with respect to x, y, or z,

usually at the origin. But these derivatives can be expressed

22

~ 



~~~~ppUI!Ir MU!~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ --~ - ; ~~~~~‘-T.  
- 

- 
-
-
•- - - 

•-~~~ .

by the functions 4,th~ m, ~~ (Eq . (33)). Thus, one obtains
V a further relation

(U’s ~~ 

1) 

“ ~
‘(~~ i ~‘f’iJ/o’ - 0 (58)

for all functions 4, m,n,i, and an arbitrary outer boundary
surface of the region under consideration. One can gain from
Eq. (57) another form of the far field criterion. Let S be a - 

-

surface in the flow field which includes all points at which -
•

h(r ’) ~ 0 but lies inside of the boundary ~R of the computed
field. Let 4, be the solution of a problem

which satisfies the far field conditions and let be the values
of 4, at the surface S. Then one can solve the Dirichlet problem ,

which has L4, = 0 inside of S (including the region within an
inner bounding body surface) . This can always be done provided
that p 2 is not an eigenvalue. This means that L4, = 0 with the
boundary condition 4, = 0 at S does not have a nontrivial solution .
Excluding this possibility , one has now a function 4, which is

represented outside of S by the solution 4, of the original problem

satisfying the far  field condition and inside of S by the solution
of the Dirichlet problem just described . At S, this function 4, is

• continuous , but it has a j ump of the normal derivative. This flow
field can then be represented by a layer of poles distributed over S
where the pole density is given by the jump of the normal derivative.

Thus , we have , as the representation for the original 4, outside of S

#(?~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~, V c S  ( 5 9 )

• This representation can be applied in particular to the outer surface

~R where the farfield conditions are to be formulated . Here the

function 4, is represented by a superposition of particular

solutions ~(r,r’) which satisfy the far field conditions and where

~he singular points are arranged at a surface S.
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The limiting case where the surface S approaches the outer
boundary of the computed flow field is admissible (and sometimes
practical). In cases where is an eigenvalue of the problem
for the function S, or even close to an eigenvalue, one will find
that the function f in Eq. (59) becomes very large. For numerical
reasons, such cases must be excluded.

24 
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SECTION V

FAR FIELD CRITER IA

We started from the definition that any superposition of

expressions which ultimately can be considered as a linear
combination of expression representing outgoing acoustical waves

satisfies the far field conditions. From this idea the following

criteria have been derived.

1. The solution is a superposition of expressions (33)
2. The solution satisfies the condition Eq. (58)
3. The solutions can be represented in the form of

Eq. (-59)
4. The Kiunker-Traci formulation

Formulations 1 and 3 are closely related to each other. In each
case the solution at the outer boundary of the computed flow

field, (this includes as well as 4,) is represented by
a linear combination of particular solutions which satisfy the

far field conditions.

In the formulation 1, there arises the question of convergence

if the outer surface of the region under consideration deviates

strongly from a circle.

In the formulation 3, one has the restriction that must

not be an eigenvalue of the Dirichiet problem for the chosen
surface S. We shall see in an example that this may indeed be
an imped iment . In the formulation 2, the convergence problem
appears in a different form. The functions w play the role of

a test function. If the value of r varies rather strongly along

the outer surface, and if n is large, then because of the character

of the function f~~~(r), the functions are large for small

values of r and, comparatively small for large values of r. For

large values of n, the particular solutions behave roughly as

r ’
~. This means that the particular solutions 4, become nearly

linearly dependent for large values of n , if r varies strongly

along the outer surface.
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We shall show in an example that the exclusion of the

vicinity of eigenvalues in the application of the criterion 3
may be necessary. If p is an eigenvalue, then there exists one
or more functions 4, for which L4, = 0 in the interior of S and for
which 4, = 0 at the surface S. The normal derivative of this
function in the interior is, of course, not zero. This function
can be continued outside of S by 4, = 0. A layer of single poles
with density given by the values of 4,rt pertaining to the eigen—
function will represent this function 4, and therefore give 4, = 0
outside. In other words, one has one or more density distributions
which will not contribute to the functions 4, and 4,n at the outer
edge of the computed flow field. We shall see in an example that
the particular solutions for 4, which are lost because of this
phenomenon are needed.

The formulation 2 of the far field conditions is particularly
useful if one has to make a refinement to an existing approximate
solution and one knows that the contributions of long waves are

small. (These are the solutions for which one may find oneself in
the vicinity of an eigenvalue.) The criterion 2 works rather well
for long waves (low values of n) and the criterion 3 for short waves
(large values of n). In this sense the criteria 2 and 3 are
complementary. Further remarks about the application of this
criterion will be made later.

The formulation of Klunker and Traci is based on Eq. (53).
Here f1 is the given normal component of 4, and f2 the unknown - -

potential. In essence, this criterion is rather similar to
criterion 3 shown above except that the surface S is contracted
to the body surface and that as a consequence, one takes the
presence of sources h(r’) within the field into account.

There is, however, a difference. In the formulation 3, the
function f is considered as unknown and one expresses 4, and
at the outer edge of the flow field in terms of this function.
In the final computed flow field it must be possible to represent

as well as 4, by means of a suitably chosen function f. The
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same can, of course, be done with the use of Klunker ’s formulation.
In this case the potential at the surface plays the role of the
function f, but one does not make direct use of the fact that this
function has this specific interpretation.

In the Klunker.~rracj formulation one proceeds, however,
in a different manner. One uses the expression (Eq. (52)) to
compute only 4, at the outer boundary. Next, one uses these values
of 4, as the far field condition and computes the flow field. In

this computation, one finds the surface potential 4,. One has the
desired solution if the surface potential so found agrees with
the potential used to compute 4, at the far field boundary.

The difference between the formulation 3 and 4 lies in the
fact that in formulation 4 one disregards the condition for
at the far boundary which one could obtain from Eq. (52), and
replaces it by the requirement that the function f2 which appears
in Eq. (53) is identical with the surface potential obtained
from the flow field computation. The Klunker Traci formulation
is well suited to an iterative approach in which one updates
the surface potential in each iteration step. It becomes
inconvenient if iterations should fail.

27
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SECTION VI

AN EXAMPLE

The following example shows how these conditions can be
applied. It is extremely simple; in fact, all steps which

ordinarily require numerical techniques are carried out analytically.
The sole purpose is to show which steps must be taken if one
applies different criteria. We shall consider solutions of the
He].xnholtz equation, interpreted as a description of the propagation

of small perturbations in air at rest. The boundary of the body is

r given by a sphere which pulsates harmonically in time. The three
dimensional case has been chosen because of the simplicity of the

fundamental solution. The field has spherical symmetry because the

boundary conditions are assumed to have spherical symmetry.
Accordingly , we deal with a one dimensional problem. It is, of
course, important that the steps for which we use analytical
formula must1 in a realistic case,be carried out by numerical
techniques in one or three dimensions. While in the present case,
the far field conditions depend upon only one parameter , one will

have in reality a great number of such parameters.

The field for which the computations are carried out lies
between the radius r 0 ( radius of the pulsating sphere) and a radius
r1, at which the far field conditions are to be applied . At
r = r 0 the value of 4,r 4,rO = const is prescribed . The different ial
equation to be satisfied reduces to

~ ~~~~~~ ~~~~~ — o (60 ) H

The fundamental solution which satisfies the radiation condition
is given by

(61) j
The problem has the following solution

7 
~-~1b f -~ i~-tr - (~~ 2)
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It is readily verified that it satisfies the boundary condition

= 4,r

Because of the spherical symmetry of the problem, the density
functions for the distribution of poles or dipoles occurring in

various formulae will also be spherically symmetric . At various

occasions, for instance in the expression (50) we shall encounter
expressions 4,(r) = I f F (i ~’) w (~ -~ ‘) do’,where the integration is to

p 
be extended over a sphere r’ = const and where F(r ’) = const. Thus ,
one has to evaluate integrals

9. + 9 .
= If w(r—r ’)do ’

The numerical evaluation which is usually needed is replaced here
by an analytical approach in which we construct functions which
have the same properties as these integrals. To be specific, the

functions which arise by these integrals satisfy the Helmholtz

equation inside and outside of the spherical layer. At infinity

they satisfy the radiation condition and in case of a layer of
single poles with density 1, one has continuity of the potential
and a jump of the derivative normal to the layer. In the case of

a dipole distribution, one has continuity of the normal derivative
and a j ump of -l of the potential. Let the potential of a single
layer at radius r0 be given by 4,~~

), and the potential of a layer
of dipoles by 4,

(2)
• The direction of the outer normal which must

be taken at r = r0 is the negative r direction . Then one has

L ~ (63)

~~~~~~~~~~~~~~~~~~~~ 4(~~~~vP)J?4~~M#7

One verifies that

‘
~‘, ,‘o)  _ # ( ?~~~~o ) O

Ct”~” o ..i -~~,~ (‘~
— 0 )  /
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I
Moreover,

(~) /# L 4 4?~ P~# ~
,.)= - -j ~~~~’-e )/ t .~~~.r , ‘( ~~~~ , ( 6 4 )

j ~r ) -  fc r
~)-~~~~

’ r)r~
One verifies that

~~~~~ - ç1(Yo -D ) ’ ’

(r t~o) - E’A- - - - i a) - a

Also needed in the analysis is a general solution which satisfies
the boundary conditions at the surface of the body. In a numerical

approach, one usually does not encounter such an expression directly.
The analytical formulation is used to replace information

usually obtained by integrating the flow equations. One has

~~~ 
~~~ ~~~ (~~~~~(r ..r) ,~ ~ ~~~~~~~~~~~~~~~~~~~~~~ cDsp’i”r~r47/ 65

The first  part is the analytic solution of the problem (which
satisfies the inhomogeneous boundary conditions at r = r0, the
second part has an r derivative 0 at r = r0.

After these preparations, we can apply different far field
conditions. In the formulation one expresses the far field
(that is the field at r = r1) by a superposition of solutions (33).

Because of the spherical symmetry of the present problem, only
one of the solutions, Eq. (33) namely ,

9
~~~~ 11

is encountered , with a coefficient c1, say.
Then one has at r =

~~ “,“ ~ ~ (4’~~
’ ~ ~~~~~ 

(-
~~ 

ç)  
66

~ , LXft(~~~4 ’~~) 
(

The expression Eq. (65) gives

• ~~~~~~~~ ~~~~~~~~~~ -
~~~ -r~’~’~’1 ~‘ C f i  ~~-‘~)  ?r. 

~~~~~~ (67)
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Usually, one avoids the construction of a general solution
by numerical solution of the difference equations. (This would
require far too many free parameters.) In the present problem ,
in difference form , one obtains a linear system for the values of
4, at the points of a grid . If one eliminates the unknowns from
this linear system , starting at the profile (here r = r0) and
proceeding toward the outer boundary one f inal ly  obtains relations
between the values of 4, at the Outer boundary and at the row of
grid points next to it. These relations are equivalent to a linear
relation between 4, and 4, at the outer boundary . In the present
case , the corresponding information would be obtained by eliminating
C from Eqs . (67)  and ( 6 8 ) .  Into this equation . one then
substitutes the exoressions Eq. (66)  which express the far  field
conditions. One thus obtains an equation for C1. The solution
can obviously be found by inspection. It is given by Eqs . (67) and
(68)  with C = 0.

In the second formulation, one uses Eq. (58) because of the

spherical symmetry one needs to consider only the one function
4, (l~ l~ l I l) This gives the relation

(6 9)

This is obviously equivalent with Eqs. (66). This e~~ation is
now combined with the relation between and 4~ obtained from the
flow field (Eqs. (67) and (68) with C eliminated). The problem

is, of course, very similar to the previous case, except that
the constant C1 does not occur. One has in Eq. (69) a direct

relation between the values of 4, and at the outer contour.
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The third form of the criterion gives , for the present
example, the same procedure as the f i rs t  one since there is only
one function, u(r ,r’) which is spherically symmetric and satisf ies
the far field conditions.

We describe the fourth criterion (Klunker—Traci) in a manner

which is suited for a noniterative approach . First , one expresses ,
by means of Green ’s formula , the values of • and~~~ at r = r1 in

3 terms of the given function 4 , ( r0) and of the unknown surface

4 potential 4 , ( r0 ) here denoted by f 1. Making a token evaluation of
Eq. (52)  (actually using Eqs . (63)  and ( 6 4 ) )  and remembering
that at r = r0, 4,~ 

= 
~4,ro’ 

one obtains

~~~~~~~~~~) ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(70)

4 (‘ ) ~~~~~~~~~ “~~~~ ~~~~) 
7’/’ ~~~~~~ ‘~~ 

- 

~~~“r’~ 
-

~ 
1)

Taking the original form of the Kiunker Trac i formulation ,
we now construct a solution (in practice by solving the difference
equation for the flow field) which assumes the values of 4,(r1) at
the outer edge of the flow field . (Notice that this formulation
still contains the unknown function f1.) This is done here by
choosing the constant C in the expression ( 6 7 ) .  It is useful  to
rewrite the last equaticn.  We know that the ultimate solution is
obtained for C = 0. The function f

1 
pertaining to it is then

given by
r

- _ _ _

Now we set

I _ _ . ,S’
~

•

( 72)

Then one obtains from the boundary condition (70 )

çW7.)
/ ~~~~~ ’ d~~~~ c)  - 7/ roi M 

J(1t~~ r~~~ ~~~(f~~~~~~~~~~~~~~) 
- ~~~~~~ 7) ~~~~~~~~~~~~

- - 
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(73 )

The f irst  term in this equation agrees , of course , with Eq. (62 )
and the first term in Eq. (65). To satisfy the boundary

conditions , one now obtains the condition ( from Eq. ( 65 )  and
the last equation) .

d~~ [coif~ ~) 
- 

J~4~~4ts1J 
~LeW~r 

r )  = C ~~ 
~~~~~~~~~~~ 

~~~ r~ ce~~(~ - ]

Hence ,

C 47, ~~~~~~~~~~ 

r o)  - ‘~ )J 
‘-~~~~~~~~~~ )

( 7 4 )

Inserting this value of C into Eq. ( 6 5 ) ,  one obtains an expression
for 4, which satisfies the boundary condition at r = r0 and assumes
the values of 4, at r = r1 given by Eq. (70) . (The derivation
shown here replaces a numerical integration for the flow f ie ld . )
This solution still depends upon the unknown Sf 1. From this
solution , one obtains the potential at the surface r = r0.
One has from Eq. (65)

~j )~ ~~~~~~~~~~~~~~~~~~~~~~~
/ -~ 1.4 r0 oj I q’?-,~))  ~~~~~~~~~~~

Now one has the requirement that the function f 1 originally
assumed agree with the value of the potential at r = r0 found
from integrating the flow equation . Hence ,

~r.A ~~~~~~~~ 51~.o ,~(/ 
C ) - J ft,f r~(~~~ r, )

/ /~~wro

Hence

4’/ ,(i ~~~~~~~~~~~~~~~~~~~ 
) 0

~~~~~~~~~~~~~~~~ -‘;)) #e ,~ -r~,P)
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This is solve~d by 6f 1 = 0 (as expected) unless the factor of
vanishes. In this factor some simplifications are possible.

One ultimately obtains

j~/ 
,~f_rr,il /

~
t
~~

44r.L 
a (75)

“t4 ’~ 
Co

~ &~
(T, -V

~
))

The procedure fails if sin (pr 1) = 0. Then the condition is
satisfied for any value of of 1.

In an iterative procedure , one starts with an assumed
value of 4, at the surface r = r0, that is with some choice of
Of 1 and then computes by means of Green ’s formula the potential
at r = r1. According to Eq. (73), it deviates prom the
unknown potential of the exact solution by

d~~~/ c o~~~~ ) -  f~~~(-?”;)
With this boundary condition , one integrates the f low equation,

• and arrives at a surface potential whose deviations from the

exact solution is given by

,~~ 
~~ 4) - ~ti~~~u ra)J 

~~4il-~~~~’ ~)
“

The potential so obtained is then taken as the starting point

of a new iteration step. The iterations converge (in this

particular case) if the absolute value of Of 1 decreases , that is ,
if

I ~~~~~~~~~~~~~~~~~~~~~~~~~ c~~~~~~~’~~—’~~
)  I

In general, this condition is not satisfied. It is, however,
satisfied for p sufficiently small. For p = 0 the correct value

of 4, is obtained in one step. The denominator in the last

expression vanishes if is an eigenvalue of the problem

c’xx ~~~~~p ’~ 9~~ ~~~~~~~~~~~
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with boundary conditions = 0 at the surface of the body and

= 0 at the outer contour. If one is in the vicinity of such an
eigenvalue, and one tries to solve the equation for 4, numerically
(or analytically) then the solution will obviously become very

L large. A noniterative application of the Klunker-Traci procedure
in this form is made di ff icult by the fact that one must f i rst
compute the flow field with conditions at the outer boundary
containing the unknown surface potential , before one can apply the

p condition that the potential obtained from the flow field computa-
tion must equal the potential assumed in assigning the far

field conditions. For noniterative applications, the far field
condition 2 may be more suitable.

The nonconvergence of the iterative process can probably
be avoided if one derives f rom the values of 4, and determined
by Green ’ s formula (here Eqs . (7 0 )  and (71 ) )  a d i f fe ren t
boundary condition. For the present problem , this possibility
has been discussed by the author with the -ip 4, + number prescribed
according to the values computed from Eqs. (70)  and (71) . In
this formulation, the occurrence of the imaginary unit is important .
One find s that the denominator of the last expression will not
vanish. This would probably allow one to use an iterative procedure
in conjunction with the Kiunker-Traci method . However , the
di f f icu l ty  of nonconvergence still exists if one tries to carry
out the flow field calculations for these boundary conditions by
an iterative process.

For a case with spherical boundaries, the situation can be

discussed , even in a more general case , by means of the particular
solutions (Eqs . ( 3 3 ) )  where the function f~~~ is determined by Eq. ( 2 8 ) .
This equation shows that for r2p2 < n(n + 1) in the three dimensional
case) the functions are nonoscillatory. A similar result applies,
of course , for the two dimensional case (rp < m). Eigensolutions
become possible for values of n where the solutions f~~~ are in
the oscillatory region . In essence , this amounts to

<
, 

~~~~~~~~~~~~~~~~~~
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For n = 0 one obtains

It follows that the difficulty encountered by the presence of

eigensolutions depends in essence on the size of the computed part
of the flow field (here p r~ or p ( r 1 — r0)), not on the size of
the body (here r0).

Accordingly, it is desirable to keep the computed part of
the flow field as small as possible. The limiting factor is the

function h(r) in Eq. (54) which must be zero at the location
where the farfield condition is applied (except in the case of

Kluriker’s formulation). In realistic cases, the function depends

also upon 4, and this determines the size of the flow field to be

computed .
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SECTION VII

REMARKS ABOUT THE NUMERICAL SOLUTION OF THE
PARTIAL DIFFERENTIAL EQUATION

For p not small it is necessary to solve the flow field
by direct methods. Eq. (9) shows that for fixed circular
frequency u, p becomes very large as the Mach number approaches
1. Here the idea of Achi Brand (Ref. 3 ) may be useful. One
computes the flow field in a mesh which is just fine enough to
include all eigenfunctions which are responsible for the failure

P of an iterative process and uses a finer mesh to derive more
accurate solutions by iterations. The iterations will not converge
because the contributions of the low eigenvalues are not completely
removed and new contributions are brought in by the iteration
process itself. For this reason, one alternates between the
determination of a correction by means of a direct method in a coarse
mesh and an improvement of the solutions by iterations in a fine
mesh.

Some thought should be given to the choice of the mesh.
The mesh size determines the waves in the solutions which are
picked up by the procedure. The mesh size is, therefore,
determined by the value of p . Without further information , this
gives a lower limit for the mesh size. This limitation applies

to the entire flow field. It can not be disregarded in distant
parts of the flow field. The situation is different in steady -

•

problems.

The form of the particular solutions (Eq. (33)) shows
that the main variation occurs in the r direction. The function
~m (~ ) cos(mO ) remains the same along rays through the origin.
This means that these particular solutions can be properly represented
in a grid system formed by the intersection of equidistant surfaces
r = const with rays through the origin.

The same conclusion is obtained by the following consideration.
Along the surface the potential has only a finite phase difference
mainly determined by the boundary conditions. One can then draw
lines of approximately equal phase. They are equidistant curves

37
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to the surface. For a plate such lines are shown in Figure 3.

Along each of these lines the phase differences are the same.

It is therefore not necessary that the number of grid points
available along these lines increases as the distance from the
plate increases. The number of grid points corresponds to the
number of rays through the origin which one would use to
approximate the particular solutions Eq. (33) or their two-
dimensional counterpart. However, the distance from one such
line tc the next is critical and cannot be decreased as the dig—

tance from the origin increases. Such a system of coordinates
would, for instance , be approximated by a system of confocal
ellipses and confocal hyperbola as shown in Figure 4. Actually ,
the ellipses are not equidistant. They must be chosen in such
a manner that the largest distance between them is smaller than
the critical wave length. Writing down the difference equations
for such a system, one obtains a large block tridiagonal matrix.
Now one eliminates the unknown values of the potential starting
at the surface and proceeding from one ellipse to the next. At
the end, one is left with relations between the unknown values of

4, for the last two ellipses.

In the elimination process one may have some pivoting problems.
They would arise , for instance , if for ~ne of the ellipses, the
value of p under consideration is an eigenvalue of the problem
with the normal derivative prescribed at the body and zero value
of the function prescribed at the particular ellipse. The ultimate
aim is to find an expression which represents 4, and at the
outer boundary (or equivalently 4, along the last two ellipses).
This is the information which one obtains from integrating the

flow equation with the prescribed boundary conditions at the
body. This information is combined with the far field conditions

most conveniently in the form 2. This is a global condition which

connects all values of 4,and4,~ at the outer boundary. Corresponding
to the finite mesh size, one will choose only a limited number of
values n and m. From these conditions one then computes the values
of 4, and q

~ along the last two ellipses and then by back-substitution
for the whole flow field.
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It must be conceded that the mesh advocated here is not
applicable in all cases. For instance, in the transonic flow
problem one may prefer a mesh which takes its orientation from
the free stream direction. Moreover, in the transonic flow
problem one may have a fairly rapid change of the coefficients of
the linearized differential equation for unsteady flows and the
mesh must be fine enough to reflect these variations. These

• questions should be explored by numerical experiments.

I
I
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SECTION VIII

FINE GRID ITERATIONS

Assume that the problem allows the application of Brand ’s
procedure. Then one will use iterations carried out in a fine
mesh to improve approximation obtained in a coarse mesh. It is
fortunate that for the fine grid, the far field conditions have
approximately a local character although they are, in principle,
global conditions. (This means that they give relations between

all the values of 4, and at the outer boundary.)

We use, for this purpose, the third formulation of the far

field conditions, letting the surface S coincide with the outer
boundary of the flow field. It is assumed that the computation
with a coarse mesh has suppressed long wave perturbations which

are detrimental to the convergence for iterations in a fine mesh.

In the third formulation , the far field conditions are
expressed by means of a density function f(r’), which so far is

unknown. Assume that in the kth iteration step we have some
approximation f~~ to this density function. Then one makes the
following computations:

1. Compute the values of 4, at the outer pertaining boundary
for this function f(h) by means of Eq. (59).

2. Compute the values of at the outer boundary by
means of Eq. (59). In this computation a limiting process,
familiar from the treatment of solutions of the Laplace equation
by means of an integral equation method is required . This

function is denoted as 4,fl ,outer
3. Compute the inner flow field (iteratively) by means

of some numerical method using the values of 4, obtained in step

1 as boundary values.

4. Determine from the solution obtained in step three,

the values of at the outer boundary; this constitutes n,inner

42
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5. Compare the result of step 2 with that of step 4. If

the difference is sufficiently small, then the far field conditions

are satisfied. If this is not the case, then one carries out
step 6.

6 f(k+l) — f(k)Set — - ‘4,
~outer - ninner ’

This correction is suggested by the analogy of the Laplace equation.

This correction to the pole density gives exactly the j ump of the
normal derivatives.

The procedure is effective only for wave lengths which are
short enough so that the corresponding particular solutions (Eq.
(33)) behave in essence like those of the Laplace equation. We

F illustrate the procedure for the Laplace equation in two dimensions.
Let us assume that we have an error in the density function given by

6f (k) = c sin (mO)
In the manner discussed in Section V, one obtains , as a result of
the integration for the far field conditions , a function 64, which
is free of singularities inside and outside of the circle with
radius r1, is continuous along the circle, and has a jump of the - 

-

normal derivative given by the function Of. Such an express ion
is given by

• - L ~ fr/~)
”
~~v(sw #) , 

)~ (‘2
- ‘2 / ~/ r) .~~ (~i~i ~~~) ; ‘)  ‘~

One therefore obtains, as a result of step 1, an error in 4,

and as a result of step 2, an error in •n outer

In step 3, one solves the inner problem with the conditions
= 0 for r = r0, and 64 is given by the result of step 1:

C (~~~)~~~~~~~~

‘ 

~~~~~~~)

“p 
t~~~~~) “ i?)
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This then gives for the normal derivative at r =

“p L~J
11 c . ~~~ 

(~ 7
uç . z — _ _ _ _ _ _ _ _ _ _ _ _

Y/’~
. 

~~ ~
and for the difference between the normal derivatives of the outer

and the inner solution

_ _ _ _  

/
- I;

~,,..,v 
4 ~~~~~ #i/i 

# (-5~-P~’ 
e ~~~~~~~~~~~~~~~~~~~

The correction carried out in step 6, then leads to an error in the
density formula given by

~~~~~~~~ q~~~~~ 
e 

~~~~~ ~1 ~~ ~~ ~
) 
iil~/

4
~

This amounts , indeed, to a considerable reduction of the error.
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SECTION IX

CONCLUSIONS

The results needed for the practical application are given
in Section V. The Klunker-Tracy iteration is useful for small
frequencies, but other methods, for instance method 3, may be
equally efficient. Most useful is probably a combination of the
formulations 2 and 3. The applications are demonstrated in an
overly simple example in Section VI. This example may not be very
useful for practical work, but it shows possible difficulties, and
properly interpreted , it also shows the steps that are to be taken.
Section VII tries to counteract the strong analytical flavor of
Section VI by discussing in general terms which steps are to be
taken in the frame work of a finite difference method. The
author believes that the ideas of Achi Brand who advocates the
simultaneous use of grid systems of different size can be very
useful in practical work. Section VIII describes the use of
the third formulation of the far field conditions in an iterative

solution for the fine grid .

These discussions are carried out with a view toward

practical numerical application . The step to a workable program

in a specific situation has not been carried out so far.
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APPENDIX
RELATIONS CONNECTING DIFFERENT PARTI CULAR SOLUTIONS

The functions f~~ are defined by Eqs. (29), (30), and (32).
One has

E%) -“-I 
~~~ 4/ (r) 

~ (Al)

with

/ ~~~ (d~*. 4)! (A2 )
4!(,v~4,) ’ (2,~ )/

Notice that for all n

a~~~= / at” 2~~4.. (A3 )

The i -llowing relations will be derived

a. (A4 )// (it~#i )  / 4~~~k ~~~~~~~

dr
(A5 )

~~~~~,- /

This is done by substituting the power series development into
these formulae. Notice that one has two contributions to df ~~~~/dr;
one from differentiat ing the power series , the other from
differentiating the exponential function. One obtains for the
coefficient of the term with the power r~~~

1 + k of df~/dr

4~ii~~ / ‘i..1 (i~a.-~~-,)/ / / ‘1,.’ (~~
,p- s~~).

1

(2r)  1(441)1 ~4~~~~.4- /)!  (i.~)! 
(-n~~t) 4 / ( ~i -4) /  (~~~.‘ I

~. (ii )
k~f/

___ ~~~~~~ 
( -4-/)!(,~.a _~ 1.. #~~ 4 _  .

(4.t I).’ (~s~ -&J,’ (2’~L’

The coefficient of the term with the power ~~~~~~~ of df~ /dr +
n+l .(n+l) f is computed next. One obtains
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(4,~/),/ / .~-&11 (2s~) .’ 

L a.

,~ (‘r.~~/) 
/ (n#i).’ (2,~~ 4,u’~1.’

(4ti).’ t’*-4)! (2*t2).
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 

- ~~

,~ ~~~~~~~~~~~~~~~~~~~~~~ ~11J

The term within the braces is simplified to

if) ~~~~~~~~~~ 
,
~4 ~~ /)2(f2~a.,4/)  *( /)(2)l#—4)t2%_

~~#/)J

The term within the bracket vanishes for k = -l and k = 0 because
of Eq. (A3). It is a quadratic function in k. Therefore, it
can be written as k(k+l) time constant. The constant may depend
upon n. It is readily obtained by letting k tend to infinity.
One obtains

1~~
1= 

-~~,(.~ ,i/ )4(4.#,)

The coefficient of the term with power r~~~~~~of d?’/dr + (n+l) -

ffl+l is therefore given by

(2 i” / ~s- . (2*. -~~-/ ) .’ ,~
(4-i).’ ~~~~~~~ (I~L # / )  ~‘ 2

The coefficient of the terms with power r
_fl_l+k of f’~~ comes from

n-lak_l
$1.-, / (,,~_ ,)/ (~‘~ -4-’)!

£ (2~~M,) 
(4~/)! f’. 4~.’ (IJ I....2)!

This suffices to establish Eq. (A4). Eq. (A5) is verified in an
analogous manner. The coefficient of the term with power
r~~~

2
~~ of f

fl+l 
- (l/r)f n is given by

— ‘~ . 4 / ((~.ii)/ (bi,4,’~~
, ~~~ (

~‘~~~-4P’a.
4 

- (2?~
) 4~’l,4.~-4~,)! (14ts)/ 

- 

(“-4).’ (2k..”

(‘~,‘/)/~2,. ~~~~~~~~ ~~)-~4’t~’i)f*.-~
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The term in braces vanishes for k = 0 and k = 1 and behaves as k
for k -

~ ~ . Hence,

Ii -

and
Ii.41 %. 4 / ‘4-, ~

1 
~~~~ 

.4)! /
4- - 4-  ~~~(i&.a..~) —

4 6 (&.-~)! (,, ~4 ,i,)! (i~~~#n / ‘-
The coefficient with the power r~~~~

2
~~ of f fl~ l is given by

n-l
k-2

~~~~~~ 
/ (4-’)! (2k..

= 

~~~~ (k~-L)! ~6,— é~”/).’ (in~-~ ).’

From the last two formulae , Eq. (A5) is immediately obtained . 3
From a theoretical point of view the existence of formulae of the

type A4 and A5 is not surprising. One deals with contiguous
confluent hypergeometric functions.

Similar relations exist for the Legendre functions. We use
the definitions given in Reference 4, but take the formulae from
Reference 5. There exist a number of different definitions in the
literature (also, there is probably a misprint in the section called
notations in Chapter 8 of Reference 5 ) .  For clarity, the definitions
to be used and the basic formulae are repeated here.

~~~~ 
(~~~)~~~~ 

~~ (~~~ (4p-2r)/ (A6)
~~~~~~ ~~~~~~~~~~~~~~~~~~ (n.—Lr ) !

Reference 4, page 274. We have not given an upper limit for r.
The sum terminates automatically when one of the factorials in
the denominator assumes a negative argument (here for r = + 1
if n is even, and for r = ~j1if n is odd). That is, the sum goes
up to r = for even n, and up to r = for odd n.
Furthermore,

z:~~~
(-)

~~~
(/-

~~~
)

~~~
’ d~

’ ,j~) (A7 )

Differences in definition may occur because one may replace (_1)m

by 1, and because of the argument (l_c 2)1W2 (in the formulae of
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5-5—. —~~~~~~~~ 5 .  . .- - -
~~~

1~
Reference 4 one has always (C 2-1)). This would introduce a factor

(±~)
m. For this reason, the formulae of Reference 5, made con-

sistent with the present definitions, are repeated here. The

signs have been checked by evaluating these expressions for the

highest powers of ~~~. Also, the lowest powers have been

examined.

- ~~~~~~~~~~ ‘-~~

‘

~~~ 
- ~~~~~~~~~~~ (A8 )

from (8.5.1) of Reference 5

~~~~~ 
, 1 4P (A9)

from (8.5.2) of Reference 5

~~~ ~ 
f,%t~-~ii.#i)2’~ # 

~~~~~~~~~~~~~~~~~~ 

(AlO)

from (8.5.3) of Reference 5

(no check necessary since the superscript of P~ does not change)

(i-f) 4Zir~~ - # (~~~~~~~~~~)1 (All)
from ( 8 . 5 . 4 )  of Reference 5

(no check necessary, since the superscript of P~ does not change)

2”'’. - - (~,,,,)( ,~~ B//4J ~~~’ (A 12)

from (8.5.5) of Reference 5
The following formulae will be used.

~~~~~~~~~ 
f ( k .- ’iI . #F,) z ” ’ #(4~~~).~~~J (A 13)

f ’-f i  *r ~~~~~~~~~~~~ .# ( ‘) ( ‘ “~.) 7~~J (Al4)

• 1/4. 4N- I ~~~~~

I 

(i.. f~
) 7 f  

~.,#, ~ 2 J (AlS)
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— 

V 

~~~~ 
_ _  - ((q #/)(/-~~~ ~

(A16)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- ~~~~~“~~‘-J ’.’J (A17)

~ 
(I - ~~ 

~ ~~~~~~~

- / i’~ * ~~ ii(’& - ~~ ~~) f.~t”-~ ~) ~~ *vJ 
~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ ~~~~
Eq. (A 13) is identical with Eq. (A l O ) .  Eq. (Al4) follows from
Eq. (All) with some further computations by eliminating ~P~~(t)
by means of Eq. (AlO) . Eq. (A15) is identical with Eq. (Al2),

with m replaced by m + 1. Eq. (A16) requires some further
arimetic. One obtains from Eq. (A7)

d1 -~~~~ _ _

d~ ‘- ,r’• ‘~~- (,l...ja.) a

Hence,

f ~.r~’,—t ’4
~ ‘~

Now from Eq. (A13) with m replaced by m + 1

— # 1

~ ~: ~ ~~~~~~~~~~ ~~~~~~~ 
~~ 
(
~
, St. 4~f ~ ,,)7 -, 1

Furthermore , we use Eq. (A 15) . Substituting these two expressions
into the last equation, we ultimately obtain Eq. (Al6). To obtain

Eq. (Al7) one first writes down Eq. (A8) with m replaced by rn-i

and substitutes Eq. (AlO ) with m replaced by rn—i

~~ ~~~~~~

‘
= 

~~~~~~~~ ft’.s.-~
.v t2)C’ ~
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To derive Eq. (A18) we start from Eq. (A9)

1’.t~~~~ ’1’~ ~~~~~~~~~~~~~~~~~~~~~~~
Now from Eq. (A8) with m replaced by rn-i

,:v• (,-~~‘~
‘
~[(~ ~*~#‘)??: - (~#“.-‘)7 1

Hence

(,-t.~ ‘~
: - *i-~ ~‘)~~~~~2 - ~~~~ ‘~ 

- ‘)J~~~~~~~~~,

~ ~~~~~~~~~~~~~~~ 
#,)?~~ -~ v ( / )~~~,J

Now from Eq. (AlO) with rn replaced by m-l

~‘:~= ,,, ,~~ f(sL- *#a,) 7’~ ’ *t*-i)!”/

This leads to Eq . (A 18).

These equations are now used to derive formulae which express
x, y, or z derivatives of certain particular solutions by other
particular solutions with changed m or n. We have

x~-~y~#a 2, ~~~~~~~~~~~~~~~~~

(A19)
2.

Hence

_ _  a

f~~~~~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _  
— _

~~~~- J l
.
~ (A20 )

_ _ _  - -  - -~~~~~~~~~ - - 
-5—-

~~~~~~

— - — - — --

~~~~~~~
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- 
- 

- 
~~~~~

•-; 
- ~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-‘-

~~~~~
-
~~~~~

. 
~~~~~~~~~~~~~~~~~

fl .‘

y
~ ~~ 

- 
~~~~ (/-~~

) 
~~~~~~~

- ~~~~~~ -

_ _  
/ / a.

- 
7 

a ?-
~‘-~~) (A20)

-Y / a. ’h . (concluded)
- - _.. (‘,

~~~~) 
~~~~~~~

a ~~(i~~ ) C~ig~
-.

Using the formulae just derived, one obtains

~ /C~/ / ~~~~ 
‘%)/ i:; ~~~~~~~~~~~~~~~~

Here Eqs. (A 4 ) ,  (A 5) ,  (A 13) and (A14) are substituted .

j~i~~i::; /(%?-

‘-If4~ *vr j~. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~‘ ‘
~ / I

Z 1 I~v 4,f,fj 1 2’~.#i “‘ i’ 2*ii

~1’ “

~~~
“‘ 

~~ 

/ 
.
~
. 

~~~~~~~~~~~ CJ(-( ~tI1/ ~:; 
t~~~j

Here the products 
~~~ 

and 
~~~ 

ffl+i vanish and one finds

~ 
c(t) 1 ,:; J ~~~~~~~~ 

~~~~ 

- 

~ ~~~
‘ ~‘ ~‘r~ ‘

~ (A2 1)

~ ~~~~~~~~~~~~~~~
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One observes that P~ = 0 if n < m; that is , this sequence of
equations starts with m = n and then expresses higher derivatives
in terms of function P~ with higher values of n .

Next consider

~~~~
- ff’(.t )f 7~) Cs’ ~~~~~~~~~~~~ / P

~i~~t)O~~f? 

Ih
~th) # 2”’

~j ) 
~~~~~~ ff7 ~~4vp,~ca~ p~

fit ,

# ~~~~~~~~~~~~~~~~ 
1Lr)(,~~~~ ’/4., , ,~~~~~

a [2
~
’
~~

)/ %I JZ
~ %f�J f~~~(~)

”
~~
’
~~21’! ~~~~~~~~~ 1

~if*’pit.v5i~

~~~
‘ 

~~
“'e’~) 4!~ (/J)  

C~O”~,
ltW~

Hence,

* 

21?v/ “/Jr)COI,4,,,~21 - .~~L f?”7J)f~ ~r L i

(A22)

- r~ i-f f ~J f ~/r)

‘~ z:fv(1-t) 
~ -) ‘,~#,~~i)

~~ 1~~ (JJ/ “;-r) cot (~~ ) J# ~~
—[

~~
(
~ 
)f% ) £~ (iw

~~~~~~~~~~~~~~~~~~~~~ “ 
(y/ 

(A23)

,‘ ?:fI )fi~t/L ~~~ c~’~f~6w -i p~)

Now we substitute into Eq. (A22) the expressions Eqs. (A15) and
(A16) and (A4) and (A5) .
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~!. f ) ’~ ) /~r) Cat f *ip) /  -

• 
C~~~~~~ /)~4

)//;
~~

;

~
. I4~~/ -b- i ,1’I~~~

’ 
.“ (~w)(/-f~’ ~~ii,’7

~ ,,~~ 
(r

•
’~,

’ - ,,,
.uu

~:2//,
/
~~

/
)
)
,~ ~~~~

~ i~
:’ - ~,‘,Jf ( ~ ~~ ~~~~ 

- 

“~ ~I
- 

~~~
‘; “~“~ 

/ i~- ~ /) r:2f~ 
“
~~~ -t ~~ ‘ 11

- 

~~
‘J[t’~-t,)/~~i 

- 

~~~

1k4/ (~ #/~ ~w#1

C/d~~/7kV1~/1)~) f?~, / /r) ‘ f’~ 
2~ , / (~.)/

Hence

.
~~~~

_ !Z1Th.) fL) carf~~~J - 
~~~~ 

f 2,~ ’t)/% ~~~‘ “*‘ ~~~~~‘ (A2 4)

M.1• 4~~~#’

/.
~~~

,,St,
f
’

i)/ 
(r) ~ ~~~~~~~~~~~~ 

Z yV/ friJeos((.w~i)y)

Take the expression (A23) and substitute Eqs. (Al7) and (Al8)

2 [z”(j),ë%) COS(iw~) t ~~1h! ’t’V/ % ) 
~~~~~~~~~~~~~~~~~

~ 
~~~~~-1)~) (

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# ,,I.J?

~~~sf#w i  -/)(~~~~~)[(it-tI)(/-f~)- ..., z~~”’;’/

-f ~~ -’i(~~~)~~ ’Jf t~~” ~~~~~, f~~”
# ~~~~~~~~~~~~~~~~~~~~~~~ -i)(’c#*...i ?

*/J .~
4 ~~~~~
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f’

• f/ ’~%i~ ’ 
~~~~

,

[_
~~~~~4/,)/

f1il
/

~~.) 
! 

/ ~~1~rJJJ

nw-I (*#i)  nw./ ,4I~~)

~ ‘6 -i) ~s) f - (~i- *~4 /) i.~
_
~~ #2.) .2’~, ,  / - f.s~ ..~ /1i%~Lm.)2~_, /

Hence

~~~~ f ~t~!) /
tI

~~r) Cøt(~n~I) J# ;~L. ~~~~~~~~~~~~
it, -? (*-i)

a f_ (~ -* 1)(~-~~~~
) f”/’t)/ (

~
) -(si  ) (n# it.~) ! t’J~,l/  (v,IJJr

X CC~(7w~—I) 5S ) 
(A25)

There exist, of course, analogous formulae with sine and cosine
interchanged (and certain changes of signs).

Similar, but much simpler relations exist for the two-
dimensional case. One has

) 
a

1~ot ) -

~~~~~ 

a

- -
~~
./“,? fr~~~ 

-
~~~~~~~ 

= .

Then one finds

~~~ [/ / ~~~~~r) toI (~
ct ) J a~

4
~ ~j 7”~ ~~~~~~~~~ 4 

7

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -t
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Hence

~~/?~~r)c,sjrn~)J- ~/ r ~~ /~ ) J
~4~ (A26)

~~~~

i~
-1//.~~fp)

c
~il

h.
~
6)Jt Jf# 7a*~ a9~’J

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ (A27)

Consider some linear combination

i,~~(c~x) ~~~~~~~~~~~~~~~~~
(c1 and c2 constant real or complex coefficients, and N~ arerespectively Bessel and Neumann functions of order p). One has
the following relations

d~~ J( ’~ i~ (~ X)  
~~~~ 31t6X) “ ~ 

~

.(j’
6
~~~(o~x) 

a ~~ I”3qp,1”~~ ~~~~~~~~~~~~~~~~ ~~~~ _~~4f a)

H~
2
~ is such a linear combination of and Nm• One therefore

obtains from Eqs. (A26) and (A27)

~ / ) eof ~#1J ?f i~s~(~w~/Jc iV
~
’r) ~~~~~ (A28)

(A2 9)

There exist, of course, analogous formulae with sine and cosine
interchanged (and some changes in sign).
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